Skip to content

DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion

Link: arxiv, paper, code

Abstract

  • Claim: Use DDPM for Multi-Modality Image Fusion
  • Image fusion \(\to\) conditional generation, divided into 2 subproblems
    • Unconditional generation problem
    • Maximum likelihood problem
      • modeled in a hierarchical Bayesian manner with latent variables
      • inferred by the expectation-maximization (EM) algorithm
  • Training-free: all we required is an unconditional pre-trained generative model, and no fine-tuning is needed

Baseline

DDFM_1

Get Subproblems

Problem

The author lists Infrared-Visible image Fusion (IVF) and Medical Image Fusion (MIF) as application scenarios for this image fusion. Take IVF as an example:

  • \(\boldsymbol{i}\): infrared image
  • \(\boldsymbol{v}\): visible image
  • \(\boldsymbol{f}\): fused image

The target is to fuse \(\boldsymbol{i}\) and \(\boldsymbol{v}\) to get \(\boldsymbol{f}\) with high quality.

Recall the reverse SDE of diffusion process:

\[ \mathrm{d} \boldsymbol{f}=\left[-\frac{\beta(t)}{2} \boldsymbol{f}-\beta(t) \nabla_{\boldsymbol{f}_t} \log p_t\left(\boldsymbol{f}_t \mid \boldsymbol{i}, \boldsymbol{v}\right)\right] \mathrm{d} t+\sqrt{\beta(t)} \mathrm{d} \overline{\boldsymbol{w}} \]

and the score function, i.e., \(\nabla_{\boldsymbol{f}_t} \log p_t\left(\boldsymbol{f}_t \mid \boldsymbol{i}, \boldsymbol{v}\right)\), can be calculated by:

\[ \begin{aligned} \nabla_{\boldsymbol{f}_t} \log p_t\left(\boldsymbol{f}_t \mid \boldsymbol{i}, \boldsymbol{v}\right) & =\nabla_{\boldsymbol{f}_t} \log p_t\left(\boldsymbol{f}_t\right)+\nabla_{\boldsymbol{f}_t} \log p_t\left(\boldsymbol{i}, \boldsymbol{v} \mid \boldsymbol{f}_t\right) \\ & \approx \nabla_{\boldsymbol{f}_t} \log p_t\left(\boldsymbol{f}_t\right) + \nabla_{\boldsymbol{f}_t} \log p_t\left(\boldsymbol{i}, \boldsymbol{v} \mid \tilde{\boldsymbol{f}}_{0 \mid t}\right) \end{aligned} \]

\(\nabla_{\boldsymbol{f}_t} \log p_t\left(\boldsymbol{f}_t\right)\) represents the score function of unconditional diffusion sampling, which can be readily derived by the pre-trained DDPM. In the next section, we explicate the methodology for obtaining

\[ \nabla_{\boldsymbol{f}_t} \log p_t\left(\boldsymbol{i}, \boldsymbol{v} \mid \tilde{\boldsymbol{f}}_{0 \mid t}\right) \]

Likelihood Rectification

Use \(\boldsymbol{f}\) as an abbr. for \(\tilde{\boldsymbol{f}}_{0 \mid t}\)

Commonly-used loss function for the image fusion task:

\[ \min_{\boldsymbol{f}} \|\boldsymbol{f} - \boldsymbol{i}\|_1 + \phi \|\boldsymbol{f} - \boldsymbol{v}\|_1 \]

Use \(\boldsymbol{x} = \boldsymbol{f} - \boldsymbol{v}\) and \(\boldsymbol{y} = \boldsymbol{i} - \boldsymbol{v}\)

\[ \min_{\boldsymbol{x}}\|\boldsymbol{y} - \boldsymbol{x}\|_1 + \phi\|\boldsymbol{x}\|_1 \]

Optimization Form of Regression

Corresponding to the regression model: \(\boldsymbol{y} = \boldsymbol{k}\boldsymbol{x} + \boldsymbol{\varepsilon}\), with \(\boldsymbol{k}\) fixed to \(\boldsymbol{1}\).

The author says, "Accoding to the relationship between regularization term and noise prior distribution", \(\boldsymbol{\varepsilon}\) and \(\boldsymbol{x}\) are governed by Laplacian distribution (\(\mathcal{LAP}\)).

\[ \begin{aligned} p(\boldsymbol{x}) & =\mathcal{L} \mathcal{A} \mathcal{P}(\boldsymbol{x} ; 0, \rho)=\prod_{i, j} \frac{1}{2 \rho} \exp \left(-\frac{\left|x_{i j}\right|}{\rho}\right), \\ p(\boldsymbol{y} \mid \boldsymbol{x}) & =\mathcal{L} \mathcal{A} \mathcal{P}(\boldsymbol{y} ; \boldsymbol{x}, \gamma)=\prod_{i, j} \frac{1}{2 \gamma} \exp \left(-\frac{\left|y_{i j}-x_{i j}\right|}{\gamma}\right), \end{aligned} \]

Remark

The author wants to transform \(\ell_1\)-norm optimization into an \(\ell_2\)-norm optimization with latent variables, avoiding potential non-differentiable points in \(\ell_1\)-norm.

Proposition 1

For a random variable \((R V) \xi\) which obeys a Laplace distribution, it can be regarded as the coupling of a normally distributed \(R V\) and an exponentially distributed \(R V\), which in formula:

\[ \mathcal{L} \mathcal{A} \mathcal{P}(\xi ; \mu, \sqrt{b / 2})=\int_0^{\infty} \mathcal{N}(\xi ; \mu, a) \mathcal{EXP} (a ; b) \mathrm{d} a \]

Therefore, \(p(\boldsymbol{x})\) and \(p(\boldsymbol{y} \mid \boldsymbol{x})\) can be rewritten as the following hierarchical Bayesian framework: where \(i=1, \ldots, H\) and \(j=1, \ldots, W\).

\[ \begin{cases} y_{i j} \mid x_{i j}, m_{i j} \sim \mathcal{N} (y_{i j} ; x_{i j}, m_{i j})\\ m_{i j} \sim \mathcal{EXP} (m_{i j}; \gamma)\\ x_{i j} \mid n_{i j} \sim \mathcal{N} (x_{i j} ; 0, n_{i j})\\ n_{i j} \sim \mathcal{EXP} (n_{i j}; \rho) \end{cases} \]

Through the above probabilistic analysis, the original optimization problem can be transformed into a maximum likelihood inference problem.

DDFM_2

Ultimately, the log-likelihood function of the probabilistic inference issue is:

\[ \begin{aligned} \ell(\boldsymbol{x}) & =\log p(\boldsymbol{x}, \boldsymbol{y})-r(\boldsymbol{x}) \\ & = -\sum_{i, j}\left[\frac{\left(x_{i j}-y_{i j}\right)^2}{2 m_{i j}}+\frac{x_{i j}^2}{2 n_{i j}}\right]-\frac{\psi}{2}\|\nabla \boldsymbol{x}\|_2^2, \end{aligned} \]

Total variation penalty item \(r(\boldsymbol{x})=\|\nabla \boldsymbol{x}\|_2^2\) is added to make the fusion image \(f\) better preserve the texture information from \(v\), where \(\nabla\) denotes the gradient operator.

Inference via EM Algorithm

An Overview of EM Algorithm

E-step: calculates the conditional expectation of log-likelihood function

\[ \mathcal{Q}(\boldsymbol{x} | \boldsymbol{x}^{(t)}) = \mathbb{E}_{\boldsymbol{m}, \boldsymbol{n}\mid \boldsymbol{x}^{(t)}, \boldsymbol{y}} [\ell (\boldsymbol{x})] \]

M-step: optimizes \(\mathcal{Q}\)-function

\[ \boldsymbol{x}^{(t + 1)} = \mathop{\arg\max}_{\boldsymbol{x}} \mathcal{Q}(\boldsymbol{x} | \boldsymbol{x}^{(t)}) \]

E-step

Proposition 2

The conditional expectation of the latent variable \(1 / m_{i j}\) and \(1 / n_{i j}\) are:

\[ \begin{aligned} \bar{m}_{i j} = \mathbb{E}_{m_{i j} \mid x_{i j}^{(t)}, y_{i j}}\left[\frac{1}{m_{i j}}\right] & =\sqrt{\frac{2\left(y_{i j}-x_{i j}^{(t)}\right)^2}{\gamma}}\\ \bar{n}_{i j} = \mathbb{E}_{n_{i j} \mid x_{i j}^{(t)}}\left[\frac{1}{n_{i j}}\right] & =\sqrt{\frac{2\left[x_{i j}^{(t)}\right]^2}{\rho}} \end{aligned} \]

Finally we have

\[ \begin{aligned} \mathcal{Q} & =-\sum_{i, j}\left[\frac{m_{i j}}{2}\left(x_{i j}-y_{i j}\right)^2+\frac{n_{i j}}{2} x_{i j}^2\right]-\frac{\psi}{2}\|\nabla \boldsymbol{x}\|_2^2 \\ & \propto-\|\boldsymbol{m} \odot(\boldsymbol{x}-\boldsymbol{y})\|_2^2-\|\boldsymbol{n} \odot \boldsymbol{x}\|_2^2-\psi\|\nabla \boldsymbol{x}\|_2^2, \end{aligned} \]

\(\odot\) is the elementwise multiplication. \(\boldsymbol{m}\) and \(\boldsymbol{n}\) are matrices with each element being \(\sqrt{\pi_{i j}}\) and \(\sqrt{n_{i j}}\), respectively.

M-step

Here, we need to minimize the negative \(Q\)-function with respect to \(\boldsymbol{x}\). The half-quadratic splitting algorithm is employed to deal with this problem, i.e.,

\[ \begin{aligned} & \min _{\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{k}}\|\boldsymbol{m} \odot(\boldsymbol{x}-\boldsymbol{y})\|_2^2+\|\boldsymbol{n} \odot \boldsymbol{x}\|_2^2+\psi\|\boldsymbol{u}\|_2^2, \\ & \text { s.t. } \boldsymbol{u}=\nabla \boldsymbol{k}, \boldsymbol{k}=\boldsymbol{x} . \end{aligned} \]

It can be further cast into the following unconstraint optimization problem,

\[ \begin{gathered} \min _{\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{k}}\|\boldsymbol{m} \odot(\boldsymbol{x}-\boldsymbol{y})\|_2^2+\|\boldsymbol{n} \odot \boldsymbol{x}\|_2^2+\psi\|\boldsymbol{u}\|_2^2 \\ +\frac{\eta}{2}\left(\|\boldsymbol{u}-\nabla \boldsymbol{k}\|_2^2+\|\boldsymbol{k}-\boldsymbol{x}\|_2^2\right) . \end{gathered} \]

The unknown variables \(\boldsymbol{k}, \boldsymbol{u}, \boldsymbol{x}\) can be solved iteratively in the coordinate descent fashion.

Details about updates of \(\boldsymbol{k}\) and \(\boldsymbol{u}\)

Update \(\boldsymbol{k}\) : It is a deconvolution issue,

\[ \min _{\boldsymbol{k}} \mathcal{L}_{\boldsymbol{k}}=\|\boldsymbol{k}-\boldsymbol{x}\|_2^2+\|\boldsymbol{u}-\nabla \boldsymbol{k}\|_2^2 . \]

It can be efficiently solved by the fast Fourier transform (fft) and inverse fft (ifft) operators, and the solution of \(k\) is

\[ \boldsymbol{k}=\operatorname{ifft}\left\{\frac{\mathrm{fft}(\boldsymbol{x})+\overline{\mathrm{ftt}(\nabla)} \odot \mathrm{fft}(\boldsymbol{u})}{1+\overline{\mathrm{ftt}(\nabla)} \odot \mathrm{fft}(\nabla)}\right\}, \]

\(\bar{\cdot}\) is the complex conjugation.

Update \(\boldsymbol{u}\) : It is an \(\ell_2\)-norm penalized regression issue,

\[ \min _u \mathcal{L}_u=\psi\|\boldsymbol{u}\|_2^2+\frac{\eta}{2}\|\boldsymbol{u}-\nabla \boldsymbol{k}\|_2^2 . \]

The solution of \(\boldsymbol{u}\) is

\[ \boldsymbol{u}=\frac{\eta}{2 \psi+\eta} \nabla \boldsymbol{k} . \]

Update \(\boldsymbol{x}\) : It is a least squares issue,

\[ \min _{\boldsymbol{x}} \mathcal{L}_{\boldsymbol{x}}=\|\boldsymbol{m} \odot(\boldsymbol{x}-\boldsymbol{y})\|_2^2+\|\boldsymbol{n} \odot \boldsymbol{x}\|_2^2+\frac{\eta}{2}\|\boldsymbol{k}-\boldsymbol{x}\|_2^2 . \]

The solution of \(\boldsymbol{x}\) is

\[ \boldsymbol{x}=\left(2 \boldsymbol{m}^2 \odot \boldsymbol{y}+\eta \boldsymbol{k}\right) \oslash\left(2 \boldsymbol{m}^2+2 \boldsymbol{n}^2+\eta\right), \]

\(\oslash\) denotes the element-wise division,

Final estimation of \(\boldsymbol{f}\) is

\[ \hat{\boldsymbol{f}}=\boldsymbol{x}+\boldsymbol{v} \]

Additionally, hyper-parameter \(\gamma\) and \(\rho\) can be also updated after the sampling from \(\boldsymbol{x}\) by

\[ \gamma=\frac{1}{h w} \sum_{i, j} \mathbb{E}\left[m_{i j}\right], \quad \rho=\frac{1}{h w} \sum_{i, j} \mathbb{E}\left[n_{i j}\right] \]

DDFM Algorithm

DDFM_3

Experiment on IVF Task

DDFM_4
Metrics
  • EN: entropy
\[ EN = -\sum_{i=0}^{L-1} p_l\log_2 p_l \]

\(L\) denotes the number of gray levels, \(p_l\) is the normalized histogram of the corresponding gray level in the fused image.

  • SD: standard deviation
\[ SD=\sqrt{\sum_{i=1}^M \sum_{j=1}^N(F(i, j)-\mu)^2} \]

\(\mu\) denotes the mean value of the fused image.

  • MI: mutual information
\[ \begin{gathered} MI = MI_{A, F} + MI_{B, F}\\ MI_{X, F} = \sum_{x, f}p_{X, F}(x, f) \log\frac{p_{X, F}(x, f)}{p_X(f)p_F(f)} \end{gathered} \]

\(p_X(x)\) and \(p_F(f)\) denote the marginal histograms of source image \(X\) and fused image \(F\), respectively. \(p_{X, F}(x, f)\) denotes the joint histogram of source image \(X\) and fused image \(F\)

  • VIF: visual information fidelity
  • \(Q^{AB/F}\)
\[ Q^{A B / F}=\frac{\sum_{i=1}^N \sum_{j=1}^M Q^{A F}(i, j) w^A(i, j)+Q^{B F}(i, j) w^B(i, j)}{\sum_{i=1}^N \sum_{j=1}^M\left(w^A(i, j)+w^B(i, j)\right)} \]

\(Q^{X F}(i, j)=Q_g^{X F}(i, j) Q_a^{X F}(i, j), Q_g^{X F}(i, j)\) and \(Q_a^{X F}(i, j)\) denote the edge strength and orientation values at location \((i, j)\), respectively. \(w^X\) denotes the weight that expresses the importance of each source image to the fused image.

A large \(Q^{A B / F}\) means that considerable edge information is transferred to the fused image.

  • SSIM: structural similarity index measure
\[ SSIM = SSIM(A, F) + SSIM(B, F) \]

Details in Infrared and visible image fusion methods and applications: A survey.

DDFM_5

Ablation Experiment

DDFM_6

Experiment on MIF Task

DDFM_7
DDFM_8

Comments