Skip to content

Introduction

Part of note of Partial Differential Equations, Lawrence C. Evans

本页面还在施工中

Partial Differential Equations

PDE

k PDE 的一般形式为

\[ F\left(D^k u(x), D^{k-1}u(x), \cdots, Du(x), u(x), x\right) = 0, \quad x\in U \]

其中已知

\[ F: \mathbb{R}^{n^k} \times \mathbb{R}^{n^{k-1}} \times \cdots \times \mathbb{R}^{n} \times \mathbb{R} \times U \to \mathbb{R} \]

欲求

\[ u: U \to \mathbb{R} \]

一般来说,我们还会再给一些辅助的边界条件,约定于 \(\Gamma\subseteq\partial U\)

linear & nonlinear PDEs

  • linear PDEs: 给定函数 \(\:a_{\alpha}(|\alpha|\leqslant k)\), \(f\)
\[ \sum_{|\alpha|\leqslant k}a_{\alpha}(x)D^{\alpha}u=f(x) \]

特别地,若 \(f\equiv 0\),则称齐次 (homogeneous)

  • semilinear PDEs:
\[ \sum_{|\alpha| = k}a_{\alpha}(x)D^{\alpha}u + a_0\left(D^{k-1}u, \cdots, Du, u, x\right)=0 \]
  • quasilinear PDEs:
\[ \sum_{|\alpha| = k}a_{\alpha}\left(D^{k-1}u, \cdots, Du, u, x\right)D^{\alpha}u + a_0\left(D^{k-1}u, \cdots, Du, u, x\right)=0 \]
  • fullly nonlinear PDEs: 非线性地依赖于最高阶导数

向量化,或者说从单个 PDE 到一个 PDE 的集合,就可以得到 PDE 系统 (system)

system of PDE

k PDE 系统的一般形式为

\[ \bm F\left(D^k \bm u(x), D^{k-1}\bm u(x), \cdots, D\bm u(x), \bm u(x), x\right) = 0, \quad x\in U \]

其中已知

\[ \bm F: \mathbb{R}^{mn^k} \times \mathbb{R}^{mn^{k-1}} \times \cdots \times \mathbb{R}^{mn} \times \mathbb{R}^m \times U \to \mathbb{R}^m \]

欲求

\[ \bm u: U \to \mathbb{R}^m, \bm u=(u^1,\cdots, u^m) \]

Comments